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Abstract

One of the primary metrics used to gauge the performance of mine detection
systems is PD, the probability of detecting an actual mine that is encountered by
the sensor.  In this report, statistical issues and techniques that are relevant to the
estimation of PD are discussed.   Appropriate methods are presented for
summarizing the performance of a single detection system, for comparing
different systems, and for determining the sample size (number of target mines)
required for a desired degree of precision. References are provided to pertinent
sources within the extensive literature on statistical estimation and experimental
design.  A companion report addresses the estimation of detection system false
alarm rates.
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1 - INTRODUCTION

A number of statistical concepts are directly relevant to the design of mine detection

experiments and demonstrations, and to the analysis of the data collected during such exercises.

In particular, standard statistical calculations can be used to bound the uncertainty that will be

present in system performance measures derived from experimental data.  For mine detection

systems, the primary metrics used to gauge performance are related to PD (the probability of

detecting actual mine targets), and FAR (the false alarm rate).  Of course, other features (e.g.,

cost, speed, and operator safety) are also important, but these are largely non-statistical concerns.

In this paper, statistical models and computations applicable to the measurement of PD are

outlined.  An appropriate statistical framework for assessing FAR is discussed in a companion

report [Simonson, 1998].

Typically, two types of statistical questions are of interest when analyzing performance

data.  These are questions of estimation and questions of comparison.  An example of an

estimation question is:  "What is the probability that detection system A will find a particular

type of target?"  An example of a comparison question is:  "Does system A have a different PD

than system B under specified conditions?"  Experiments can be designed to answer either of

these types of questions to a desired level of precision.  When (as is usually the case) the size of

the experiment is constrained by cost, one can design to ensure adequate precision for the most

important estimates and comparisons, while addressing less critical questions with lower

precision.

In the next section, the binomial model for data related to PD is introduced.  Issues and

calculations related to estimation and testing for a single binomial parameter are presented in

section 3.  Methods of constructing confidence intervals, conducting hypothesis tests, and

selecting sample sizes are described, and illustrative examples are included.  Section 4 covers

topics related to questions of paired comparison (one system versus another) under the binomial

model.  A few caveats and general considerations are briefly discussed in Section 5.
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2 – THE BINOMIAL MODEL

2.1 - Background and Assumptions

The binomial distribution [Johnson, Kotz, and Kemp, 1992] is generally used to model

experimental data related to the probability of detecting actual mine targets.  Each binomial

"trial" represents the presentation of a single mine to the detection system, and a full

"experiment" consists of a number of different trials.  At each trial, two outcomes are possible:

either the mine is detected, or it is missed.  The experimenter must develop a reasonable protocol

for determining specifically what constitutes a detection.

The binomial model assumes that a detection system being tested has a fixed (but

unknown) probability of detecting a particular type of mine under specified conditions.  In

statistics, this probability is usually represented by the parameter P; it corresponds to the quantity

PD in target recognition terminology.  The individual trials are assumed to be identically

distributed, and independent from one another.

These latter assumptions merit some discussion.  In order to ensure that all of the trials

used to estimate PD under given circumstances are roughly identically distributed, efforts should

be made to control any variables thought to influence performance.  For example, individual

mines should be similar in size and physical properties, burial depth should be about the same

from mine to mine, and soil chemistry should not change greatly.  Some variation in these

characteristics will always remain, but this should be minimized to ensure applicability of the

model.  When substantial sources of variation exist (e.g., low metallic versus nonmetallic mines,

clay versus sand), the performance analysis should be carried out separately for each set of

factors.  Statistical tests can then be conducted to determine which of the experimental factors

has a significant effect on performance.

The assumption that individual trials are independent is generally a reasonable one,

provided that each target mine is encountered but once, and mines are placed far enough apart to

prevent signal interference.  If the full experiment is to be replicated, so that detectors encounter
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the same buried mine two or more times, one should test for a "learning" effect before pooling

the data from multiple runs.  Replication can provide valuable information about performance

consistency, but appropriate cautionary measures must be taken both in conducting the

experiment [Andrews, George, and Altshuler, 1997], and in analyzing the resulting data.

2.2 - Notation

In a full experiment, some number, n, of target mines is presented to a mine detection

system.  Let X be a random variable representing the number of these mines that the system

detects; X is said to have the binomial distribution with parameters n and P [Johnson, Kotz, and

Kemp, 1992].  One major goal of the exercise is to make inferences about the parameter P.

The percentage of mines detected is given by:

.   ˆ
n

X
P = (1)

The quantity P̂  is an estimator of the true probability P.  Intuitively, the uncertainty inherent in

this estimator will decrease as n increases: an experiment giving 50 out of 75 detections is far

more informative than an experiment giving 2 out of 3.  The mean and variance of P̂  are as

follows:

( ) PPE     ˆ = (2)

( ) ( )
n

PP
P

−= 1
    ˆvar (3)

The variance of an estimator, defined as the expected squared deviation of a value about

its mean, is a measure of the uncertainty present in that estimator.  The denominator of (3)

reinforces the intuitive notion that uncertainty decreases as the sample size n increases.

Consistency also affects variance.  For fixed n, the variance is maximized when P = 0.50.  It is
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minimized (and equals zero) when the outcome of each trial is certain, at P = 0.0 and P = 1.0.

These observations are prominently employed both in experimental design and in data analysis.

3 – ESTIMATION AND TESTING FOR A SINGLE BINOMIAL PARAMETER

3.1 - Confidence Intervals for P

The use of confidence intervals is one standard way to report parameter estimates along

with uncertainty measures.  Confidence intervals are computed from observed data, and thus are

constructed after completion of the experiment.  Informally speaking, a confidence interval

contains the values of the unknown parameter that are consistent with the observed data.

Consistency is measured in terms of the a priori probability that the computed interval will

contain the true value of the parameter: 95% confidence intervals are constructed in such a

manner that they will have a 95% chance of containing the true value.  More formal definitions

of confidence intervals abound [Bickel and Doksum, 1977; Cox and Hinkley, 1974; Silvey,

1975].

The degree of confidence in an interval is often represented algebraically in terms of the

quantity α, which is equal to one minus the a priori probability that the interval will contain the

true parameter value.  Thus, for a 95% confidence interval, α is equal to 0.05.  The standard

notational convention uses the expression 100(1 − α)% to represent the certainty corresponding

to a generic confidence interval.

Two different approaches are employed to construct confidence intervals for a single

binomial parameter, P.  When the number n of trials is large, the (continuous) normal

distribution is used to approximate the (discrete) binomial [Fleiss, 1981; Lehmann, 1975].  This

approximation makes the construction of confidence intervals straightforward for large n.

However, if n is small the normal approximation is inappropriate and a more cumbersome format

for confidence intervals is required.  Various authors [Fleiss, 1981; Hahn and Shapiro, 1967]

suggest that the large-sample approach is acceptable when both nP and n(1 − P) exceed five.
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The article by Blyth and Still [1983] provides a thorough discussion of the major forms of

binomial confidence intervals, including the versions recommended here.

3.1.1 - Small Sample Approach

The small sample method for computing confidence intervals for the binomial parameter

is as follows.  Denote the lower limit of an interval by PL, and denote the upper limit by PU.  If n

trials are conducted and x mines are detected, an approximate 100(1 − α)% confidence interval

for P is defined by:

2/,,12

2/,,1

21
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= (4)

,  
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−
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with ν1 = 2x, ν2 = 2(n − x + 1), ν3 = 2(x + 1), and ν4 = 2(n − x) [Johnson, Kotz, and Kemp, 1992].

Here, 2/,, 21 αννF is equal to the α/2 quantile of the F distribution with υ1 and υ2 degrees of freedom.

Similarly, the quantity 2/1,, 43 ανν −F  is defined as the 1 − α/2 quantile of the F distribution with υ3

and υ4 degrees of freedom.  Quantiles of the F distribution are tabulated in many statistics

textbooks [e.g. Larsen and Marx, 1981], and are readily available from most commercial

statistical software packages.

The formulas (4) and (5) work for 0 < x < n.  When x = 0, the bounds:

0.0  =LP (6)

n
UP 1  1  α−= (7)

are recommended, and when x = n the bounds:
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n
LP 1  α= (8)

0.1  =UP (9)

are recommended [Johnson, Kotz, and Kemp, 1992].  Both of these represent 100(1 − α)%

confidence intervals for P.

A simple example illustrates the small sample method.  Suppose that n = 10 trials are

conducted, and x = 8 of the mines are detected.  The parameters of the relevant F distributions

are ν1 = 16, ν2 = 6, ν3 = 18, and ν4 = 4.  In order to construct 95% confidence intervals, we

choose α = 0.05.  From a table of the F distribution, F16,6,.025 = 0.299, and F18,4,.975 = 8.592.  It

follows from (4) and (5) that an approximate 95% confidence interval for the true probability of

detection is given by (0.444,  0.975).  Values of P falling within this interval are deemed to be

consistent with the observed data.

Confidence interval width (PU − PL) is a natural measure of the uncertainty present in an

estimate.  Figure 1 shows lower and upper 95% confidence bounds, as well as interval widths,

for each possible outcome of experiments with n = 10 and n = 20 mines.  All of the values

plotted are calculated from equations (4) - (9).  Note that even for a fixed sample size, width

varies considerably as a function of .  ˆ nxp =

3.1.2 - Large Sample Approach

The large-sample method of computing confidence intervals uses the normal

approximation to the binomial distribution.  For values of p̂  close to the endpoints, the preferred

form [Fleiss, 1981; Koopmans, 1987] for approximate 100(1 − α)% confidence intervals has

endpoints given by:

)2(
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Here, the quantity z1−α/2 represents the quantile of the standard normal distribution

corresponding to probability 1 − α/2. For example, to get a 95% confidence interval, one would

choose α = 0.05, and use the value z0.975 = 1.960 in equations (10) and (11).  Tables of the

standard normal distribution are found in many statistics textbooks [e.g. Larsen and Marx, 1981],

and are readily available from most commercial statistical software packages.

For p̂  away from the endpoints (say, 70.0ˆ30.0 ≤≤ p ) a simpler formula for

approximate 100(1 − α )% confidence intervals is appropriate.  Here, the bounds are given by:

nn

pp
zpPL 2

1)ˆ1(ˆ
ˆ  21 −−−= −α (12)

.  
2

1)ˆ1(ˆ
ˆ  21 nn

pp
zpPU +−+= −α (13)

The terms in 1/(2n) represent a correction for the continuity of the normal distribution, and are

omitted by some authors.  Intervals of the general form (12) - (13), with or without the continuity

correction, are provided in many references [Fleiss, 1981; Koopmans, 1987; Larsen and Marx,

1981].

Figure 2 shows upper and lower 95% confidence bounds, along with interval widths, for

each possible outcome of experiments with n = 50 and n = 100 target mines.  All of the values

shown are computed using Equations (10) through (13).  As in the small sample case (Figure 1),

the confidence interval widths computed here vary with both n and p̂ .
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3.2 - Hypothesis Tests

Statistical hypothesis tests provide a mechanism for choosing among two conflicting

hypotheses about the model underlying an observed data set [Koopmans, 1987; Silvey, 1975].

The first hypothesis is referred to as the "null hypothesis" (H0), and is accepted in the absence of

convincing evidence to the contrary.  The "alternative hypothesis" (H1) is accepted when

experimental data are deemed to be inconsistent with H0.

Two types of errors are possible when using an hypothesis test to decide between H0 and

H1: one may reject H0 when H0 is true, or one may accept H0 when H1 is true.  The "level" of a

test, commonly denoted α, is defined to be the probability of making the first type of error.  The

"power" of a test, denoted 1 − β, is defined to be one minus the probability of making the second

type of error.  Ideally, one would like to have a test with level α = 0.0 and power 1 − β  = 1.0.  In

practice this is rarely possible, so a standard approach is to choose a test with a specified level (α

= 0.05 and α = 0.10 are both common choices), and as much power as possible.  The decision to

accept or reject H0 is made based on the value of a "test statistic" computed from the observed

data.

In the case of a single binomial parameter, one may wish to test whether observed data

are consistent with the hypothesis that P is equal to some specified value, P0.  The appropriate

null and alternative hypotheses are given by:

00     : PPH = (14a)

01     : PPH ≠ (14b)

and the following test statistic is used:

. 
)1(

)2(1     ˆ  
    

00

0

n

PP

nPp
z

−
−−

= (15)
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When n is large and the null hypothesis is true, the statistic (15) has a distribution that is

approximately standard normal [Fleiss, 1981].  If  H1 is true, z will tend to be large.  An α-level

test rejects H0 when z exceeds z1−α/2, the 1 − α /2 quantile of the standard normal distribution.

As an example, consider a test of H0: P = 0.5 versus H1: P ≠ 0.5, and suppose that the

available data show x = 24 detections in n = 40 trials.  From (15), the observed value of the test

statistic is z = 1.107.  To test at level α = 0.05, compare z to z0.975 = 1.960.  Because z < 1.960, H0

is accepted at level 0.05.

The relationship between α-level hypothesis tests and 100(1 − α)% confidence intervals

is often straightforward.  The hypothesis test outlined in (14) and (15) directly corresponds to the

large-sample confidence intervals defined in (12) and (13).  If a detection rate of p̂ is observed,

then (14a) will be accepted at level α for all values of P0 lying within the 100(1 − α)%

confidence interval, and will be rejected for all values of P0 lying outside of the interval [Fleiss,

1981].  A number of authors [Bickel and Doksum, 1977; Fleiss, 1981; Koopmans, 1987] probe

more deeply into the duality between hypothesis tests and confidence intervals.

Note that the test statistic (15), which is based on the normal approximation to the

binomial distribution, is only appropriate when the number of trials is large.  For small n, the

recommended testing procedure would be to reject (14a) for values of P0 not lying in the small-

sample confidence interval computed from (4) through (9).

3.3 - Sample Size Calculations

The normal approximation to the binomial distribution can be used to calculate the

number of trials (mines) needed in a planned experiment, when the uncertainty in estimates of P

must be kept below some specified level [Feller, 1950; Koopmans, 1987; Larsen and Marx,

1981].  Here, uncertainty is expressed in terms of 100(1 − α)% confidence interval width.  The

approach taken is to specify a tolerable width for confidence intervals on P, and then solve for

the sample size that will provide this width.  This is roughly equivalent to requiring that the
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estimate p̂ should have a 100(1 − α)% chance of lying within W/2 of the true (but unknown)

value P.

The width of the approximate interval specified by (12) and (13) is given by:

. 
1

    
)ˆ1(ˆ

2    21 nn

pp
zW +−= −α (16)

Recall that z1−α/2 is the 1 − α/2 quantile of the standard normal distribution.  To compute the

required sample size as a function of ,p̂  one can set the width to the desired value and solve (14)

for n.  Omitting the (relatively inconsequential) 1/n term, we find that:

.  
)ˆ1( ˆ 4

    
2

2
21

W

ppz
n

−
= −α (17)

Some complication is introduced by the fact that one does not know the value of p̂ until

the completion of the experiment.  One tactic for resolving this difficulty is to set p̂ = 0.50,

which maximizes (17) over all possible .p̂  This conservative approach gives a sample size of:

,     
2

2
21

W

z
n α−= (18)

and ensures that the confidence interval for P will have a width of W or smaller, for all possible

outcomes.  For example, suppose that 95% confidence intervals having width no larger than 0.20

are desired for all .p̂  Since z0.975 is equal to 1.960, (17) implies that at least 96 mines must be

emplaced.

An alternative to the use of p̂ = 0.50 in (17) is to choose a value of p̂ that is believed to

be reasonable based on physical principles or prior testing.  Thus, if a particular test scenario is

expected to be very "easy" (in the sense of detection probabilities close to unity) or very
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"difficult" (detection probabilities close to zero), this scenario will require fewer trials than

another scenario for which more variable performance is anticipated.  As an example, if the

probability of detection is expected to be at least 85% for a particular type of mine, setting n = 49

trials should provide a 95% confidence interval with width no larger than 0.20.  This reduces by

about half the number of trials found using (18).

A final alternative to (18) is applicable if detectors performing below a particular level

are of marginal interest.  In this case, one may wish to constrain the confidence interval width

only for detection systems with performance above some threshold, .*p̂  Assuming that *p̂

exceeds 0.50, one can substitute it for p̂  in (17).  Suppose that one wishes to focus only on

systems detecting at least 75% of the target mines.  In order to ensure 95% confidence interval

widths of 0.20 or less for such systems, at least 72 mines are required.  Confidence intervals can

still be computed for detection systems with p̂  < *p̂ , but such intervals may have widths

exceeding the desired maximum.

Figure 3 shows the approximate minimum number of trials required to achieve specified

90% and 95% confidence interval widths, as a function of .p̂  Recall that the limits (12) and (13)

are not strictly appropriate when either nP or n(1 − P) is less than five, or when P is close to the

endpoints 0 and 1.  It follows that minimum sample sizes computed using (17) may not be exact

in such cases.  This is of minor concern in most instances.

4 – COMPARING TWO BINOMIAL PROPORTIONS

This section presents statistical methods appropriate for use in comparing the

experimental results obtained for two different detectors, referred to as system A and system B.

Define nA to be the number of trials conducted for system A, and let xA be the number of

detections.  The observed proportion of target mines detected is then Ap̂  = xA/nA.  The quantities

nB, xB, and Bp̂  are similarly defined for system B.  The true probability of detection for system A

is denoted PA, and PB is the true probability of detection for system B. Inferences about
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comparative performance are based on the difference PB − PA.  Confidence intervals, hypothesis

tests, and sample size calculations are all discussed.

4.1 - Confidence Intervals for PA − PB

As in the case of a single proportion, confidence intervals for the difference between two

proportions are not computed in the same manner for large and small samples.  The large sample

method is appropriate when the sample sizes nA and nB are large in the sense that the quantities

nAPA, nA(1 − PA), nBPB, and nB(1 − PB ) all exceed five [Fleiss, 1981].

4.1.1 - Small Sample Approach

The problem of constructing small sample confidence intervals for the difference

between two binomial proportions has received considerable attention in the statistical literature

[Beal, 1987; Mantel, 1988; Peksun, 1993; Santner and Snell, 1980] and remains an area of active

interest [Wallenstein, 1997].  Unfortunately, the methods proposed are generally quite complex

and awkward to implement.  While some solutions are available in commercial software

[StatXact-3, 1995] there is no general agreement in the literature as to which approach is

preferable.  No specific recommendation is made here.

4.1.2 - Large Sample Approach

The large sample approach is based on the normal approximation to the binomial

distribution, and computation of the confidence intervals is straightforward.  A 100(1 − α)%

confidence interval for PB − PA is defined by the bounds [Fleiss, 1981]:
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As before, z1−α/2 represents the quantile of the standard normal distribution corresponding to

probability 1 − α/2.

As an example of the use of (19) and (20), suppose that system A was presented with nA

= 37 target mines, of which xA  = 15 were detected, while system B encountered nB = 40 mines

and detected xB = 31.  It follows that Ap̂  = 0.405, and Bp̂  = 0.775.  To create a 95% confidence

interval for PB − PA, α is set to 0.05.  The relevant normal quantile is z0.975, which equals 1.960.

It follows from (19) and (20) that (0.139, 0.600) represents a 95% confidence interval for the

difference in detection probabilities.  Note that the value 0.0 (implying equal capability for the

two systems) lies outside of the interval.

4.2 - Hypothesis Tests

The performances of two different mine detection systems can be compared in a

straightforward fashion by asking the question:  "Is the PD demonstrated by system A

significantly different from the PD demonstrated by system B?"  In statistical terms, this question

is phrased as an hypothesis test, with null and alternative hypotheses given by:

BA PPH =  :0 (21a)

BA PPH ≠  :1 (21b)

A standard test statistic for employment in this situation is:
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where )/()ˆˆ(  BABBAA nnpnpnp ++=  [Larsen and Marx, 1981].  The observed value of z is

compared to the 1 − α/2 quantile of the standard normal distribution to determine whether the

difference is significant at level α.  If z exceeds z1−α/2 the null hypothesis is rejected.  Otherwise,

H0 is accepted.

The test given by (21) and (22) is equivalent to the familiar Pearson chi-square test

[Bickel and Doksum, 1977; D'Agostino, Chase, and Belanger, 1988].  Some authors [Fleiss,

1981; Lehmann, 1975] recommend a variation of the test statistic that incorporates a continuity

correction.  However,  simulation studies [D'Agostino, Chase, and Belanger, 1988] indicate that

the uncorrected version is preferable, and is appropriate for both large and small samples.

The method can be illustrated using the hypothetical performance data given in section

4.1.2.  For these data, the test statistic takes on value z = 3.304.  To test at the 95% level, z is

compared to z0.975 = 1.960.  Because the observed value of the test statistic exceeds the threshold,

H0 is rejected, and the performance difference between the two systems is deemed to be

significant at the 5% level.

4.3 - Sample Size Calculations

The test statistic (22) can be used to determine the sample size required to compare the

performances of two different systems to a specified level of precision.  The method outlined

here assumes that the same sample size (number of target mines) will be chosen for each

detection system.  For a more general method, see Fleiss [1981].

As a first step, the experimenter must specify four different probabilities.  Using the

terminology of section 2.2, the first two of these probabilities are α (the level at which the test is

to be conducted) and 1−β  (the desired power of the test). The remaining two probabilities are

0AP and ,
0BP nominal detection probabilities for systems A and B such that the test will have a

chance of at least 1 − β of giving a significant result when the true value of PA equals 
0AP and the
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true value of PB equals .
0BP  Given values of α, 1 − β, ,

0AP  and ,
0BP  a sufficient sample size for

each system can be computed.

A concrete example serves to clarify the situation.  Suppose that the experimenter wishes

to conduct hypothesis tests at level α = 0.05, meaning that there is a 5% chance of rejecting H0

when the two systems do not actually differ.  Suppose further that the experimenter wants to

have at least an 80% chance of obtaining a significant result (rejecting H0) if the true detection

probability for system A is 0.90 and the true detection probability for system B is 0.60.  Then the

probabilities α, 1−β, ,
0AP  and 

0BP  are set to 0.05, 0.80, 0.90, and 0.60, respectively.

Once the four probabilities have been specified, the required sample size can be

computed.  Let z1−α/2 and zβ   represent the quantiles of the normal distribution corresponding to

probabilities 1−α/2  and β, respectively.  Compute the initial quantity:
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The required minimum sample size is:
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A table in Fleiss [1981] gives values of (24) for many choices of level, power, and nominal

detection probabilities.  Each of the detection systems should be presented with at least n mines

for the test to have the desired power.

For the probabilities specified above, (23) and (24) give n′ = 31.50 and n = 38.16,

implying that 39 or more mines are needed to ensure at least an 80% chance of detecting a

difference when the two systems have detection probabilities of 0.90 and 0.60.  The required

sample size increases rapidly when the detection capabilities of the two systems converge.
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Keeping α = 0.05, 1−β = 0.80 and 
0AP = 0.90, (24) gives sample sizes of 72 for 

0BP = 0.70, 219

for 
0BP  = 0.80, and 726 for 

0BP = 0.85.  This result is in agreement with the intuitive concept that

small differences are more difficult to detect than large differences.

5 – DISCUSSION AND SUMMARY

The statistical methods outlined in this report can assist both in designing experiments to

study the capabilities of different mine detection systems, and in analyzing the data collected in

such experiments.  In the interest of brevity, some pertinent considerations have been neglected.

A few of these merit brief attention at this time.

When more than two different mine detection systems are included in the experiment, the

issue of multiple comparisons becomes relevant.  Consider 95% confidence intervals for a

difference in mine detection probabilities. In the case where just two detection systems are under

test, a single confidence interval can be constructed that will have a 95% probability of

containing the true difference for these two systems.  However, if some number k > 2 of systems

are tested, then k(k−1)/2 pairs can be compared, each using a different 95% confidence interval.

Any one of these intervals has a 95% a priori probability of containing the true difference for the

two systems in the pair.  However, the probability that all k(k−1)/2 intervals will simultaneously

include their true  parameter values is somewhat less.  The text by Box, Hunter, and Hunter

[1978] describes several statistical techniques developed to address the problem of multiple

comparisons.  Often, no special action is needed as long as the investigator is aware of the issue

when interpreting the data.

Another consideration involves controlled experimental factors that are expected to affect

system performance.  In a typical experiment, detection systems are tested against various

different target types (e.g., anti-tank and anti-personnel mines) under different scenarios (e.g.,

dry and moist soil).  The computations and analyses outlined in this report are to be conducted

separately for each combination of factors tested.  In addition, the statistical method known as
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the analysis of variance (ANOVA) can be used to determine which factors (mine size, mine type,

burial depth, soil moisture, etc.) impact performance [Box, Hunter, and Hunter, 1978].

For many mine detection systems, the primary output is not a binary ("mine/no mine")

decision, but rather a continuous variable, expressed as a function of location (or time), that is

thresholded to determine where (or when) detections have occurred.  In this report, only the

binary results have been considered.  It is assumed that threshold levels are chosen by the

operators of the various systems to optimize performance.  If thresholded data were not

available, one logical choice would be to set a threshold for each system that corresponds to a

fixed false alarm rate, and then to comparatively assess PD across systems at that chosen level of

false alarms.

Any useful analysis of mine detection system performance must consider false alarm

rates in addition to detection probabilities.  The use of receiver-operator characteristic (ROC)

curves is a standard way to display PD performance at multiple levels of FAR [Andrews,

George, and Altshuler, 1997; Poor, 1988].  Additional statistical methods relevant to the analysis

of false alarm data are discussed in the companion to this report [Simonson, 1998].
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Figure 1 – Small sample confidence intervals for a single binomial parameter.  Bounds and widths are shown
for 95% confidence intervals, for n=10 and n=20 mines placed.  All of the values plotted were computed using the
small sample method of equations (4) through (9).
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Figure 2 - Large sample confidence intervals for a single binomial parameter.  Bounds and widths are shown
for 95% confidence intervals, for n=50 and n=100 mines placed.  All of the values plotted were computed using the
large sample method of equations (10) through (13).  The small jumps seen in the bounds for n=50 at p̂ = 0.30 and

p̂ = 0.70 are due to transitions between the use of (10) and (11) and the use of (12) and (13).
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Figure 3 - Sample size requirements for the estimation of a single binomial parameter.  Values plotted on the
upper panel represent the number of samples needed to obtain a 90% confidence interval with width equal to 0.10,
0.15, or 0.20.  The same information for 95% confidence intervals is shown in the lower panel.
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